Tackling the premature convergence problem in Monte-Carlo localization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tackling the premature convergence problem in Monte-Carlo localization

Monte-Carlo localization uses particle filtering to estimate the position of the robot. The method is known to suffer from the loss of potential positions when there is ambiguity present in the environment. Since many indoor environments are highly symmetric, this problem of premature convergence is problematic for indoor robot navigation. It is, however, rarely studied in particle filters. We ...

متن کامل

Monte Carlo Localization

In this paper we investigate robot localization with the Augmented Monte Carlo Localization (aMCL) algorithm. The goal of the algorithm is to enable a robot to localize itself in an known world. The map of the environment where the robot has to localize itself must be given to the robot beforehand. In our case the map is constructed by another robot. This map is a so called occupancy grid. An o...

متن کامل

Markov Chain Monte-Carlo Localization

MCL is an extremely general framework for localization that can be used with almost any sort of sensor and map. Its power comes mainly from two aspects: • The use of a probability model that reformulates the problem of global localization as a tractable local conditional probability. This allows position information to be gleaned from sensor inputs that at any given time provide only very vague...

متن کامل

Precision Localization in Monte Carlo Sensor Networks

We have proposed Monte Carlo Sensor Networks as a method to solve certain sensor queries in the presence of noise and partial information. In that work we used very coarse position estimates for enemy agents. Here we propose methods to (1) improve the posterior probability estimates by using a more precise analysis of the sensor range geometry, and (2) help select advantageous locations to plac...

متن کامل

Dynamic Maps in Monte Carlo Localization

Mobile robot localization is the problem of tracking a moving robot through an environment given inaccurate sensor data and knowledge of the robot’s motion. Monte Carlo Localization (MCL) is a popular probabilistic method of solving the localization problem. By using a Bayesian formulation of the problem, the robot’s belief is represented by a set of weighted samples and updated according to mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Robotics and Autonomous Systems

سال: 2009

ISSN: 0921-8890

DOI: 10.1016/j.robot.2009.07.003